Home » Posts tagged 'Food'

Tag Archives: Food

More Evidence Organically Grown Food is Healthier

by Brian T. Lynch, MSW

More and more people are looking to purchase organic foods in the belief that organically grown food is healthier. There has been growing concern about possible health impacts from the agrochemicals used in traditional crop production. These chemicals have included pesticides growth regulators and various petrochemical fertilizers. Many of these synthetic chemicals are not permitted in organically grown food. This often requires organic farmers to adopt different methods of crop production including mechanical weeding and different schedules of crop rotation. The question has been whether the absence of agrochemicals and the differing methods of food production actually produce safer or more nutritious crops.

A recent meta-analysis of 343 peer reviewed studies was published in the British Journal of Nutrition. This analysis uncovered that there are indeed significant differences between organically grown and traditionally grown crops. It was found that organically grown crops have higher antioxidants and lower concentrations of trace metals such as cadmium. I higher intake of antioxidants, such as those found in organic foods in this study, have been found to reduce the risk of cardiovascular disease and certain types of cancer such as colon cancer. Antioxidants have also been linked to a lower risk of certain degenerative neurological conditions.  Low dose, long-term exposure to cadmium can be damaging to the kidneys and can lead to the formation of kidney stones.[http://www.epa.gov/osw/hazard/wastemin/minimize/factshts/cadmium.pdf]

For more detailed information on this study the abstract has been appended below along with a link to the original study.

News that organically grown food is richer in antioxidants is especially encouraging news since there continues to be little evidence that antioxidant supplements have a beneficial effect on health. it appears that not all substances with antioxidant properties have beneficial effects, and in some cases the effects of certain anti-oxidant chemicals can be harmful. What seems to be important for receiving health benefits from antioxidant substances is to obtain them through fresh fruits and vegetables rather than through supplements.

The school of Public health at Harvard has published a good review of the benefits of antioxidants, the just of which reads:

Free radicals contribute to chronic diseases from cancer to heart disease and Alzheimer’s disease to vision loss. This doesn’t automatically mean that substances with antioxidant properties will fix the problem, especially not when they are taken out of their natural context. The studies so far are inconclusive, but generally don’t provide strong evidence that antioxidant supplements have a substantial impact on disease. But keep in mind that most of the trials conducted up to now have had fundamental limitations due to their relatively short duration and having been conducted in persons with existing disease. That a benefit of beta-carotene on cognitive function was seen in the Physicians’ Health Follow-up Study only after 18 years of follow-up is sobering, since no other trial has continued for so long. At the same time, abundant evidence suggests that eating whole fruits, vegetables, and whole grains—all rich in networks of antioxidants and their helper molecules—provides protection against many of these scourges of aging. [ http://www.hsph.harvard.edu/nutritionsource/antioxidants/ ]

 
British Journal of Nutrition
 
Higher antioxidant and lower cadmium concentrations and lower incidence
of pesticide residues in organically grown crops: a systematic literature
review and meta-analyses

Abstract;

Demand for organic foods is partially driven by consumers’ perceptions that they are more nutritious. However, scientific opinion is divided on whether there are significant nutritional differences between organic and non-organic foods, and two recent reviews have concluded that there are no differences.

In the present study, we carried out meta-analyses based on 343 peer-reviewed publications that indicate statistically significant and meaningful differences in composition between organic and non-organic crops/crop-based foods.

Most importantly, the concentrations of a range of antioxidants such as polyphenolics were found to be substantially higher in organic crops/crop-based foods, with those of phenolic acids, flavanones, stilbenes, flavones, flavonols and anthocyanins being an estimated 19 (95 % CI 5, 33) %, 69 (95 % CI 13, 125) %, 28 (95 % CI 12, 44) %, 26 (95 % CI 3, 48) %, 50 (95 % CI 28, 72) % and 51 (95 % CI 17, 86) % higher, respectively.

Many of these compounds have previously been linked to a reduced risk of chronic diseases, including CVD and neurodegenerative diseases and certain cancers, in dietary intervention and epidemiological studies. Additionally, the frequency of occurrence of pesticide residues was found to be four times higher in conventional crops, which also contained significantly higher concentrations of the toxic metal Cd.

Significant differences were also detected for some other (e.g. minerals and vitamins) compounds. There is evidence that higher antioxidant concentrations and lower Cd concentrations are linked to specific agronomic practices (e.g. non-use of mineral N and P fertilisers, respectively) prescribed in organic farming systems. In conclusion, organic crops, on average, have higher concentrations of antioxidants, lower concentrations of Cd and a lower incidence of pesticide residues than the non-organic comparators across regions and production seasons.

[ http://csanr.wsu.edu/m2m/papers/organic_meta_analysis/bjn_2014_full_paper.pdf ]

The Authors 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/

———————–
Image credit: http://upload.wikimedia.org/wikipedia/commons/2/2f/Culinary_fruits_front_view.jpg

Advertisement

Obesity, Metabolic Disease and Pathways to a Cure

What follows is my abridged version of one of the most significant summaries of research into diet and human health.  This article was written by Moises Velasquez-Manoff  for Mother Jones in April of 2013. When you go to the full text of this article you will also find a video and other helpful information.  The focus of this abridgement is to present the key advances in our understanding of diet, obesity and metabolic syndrome.  Omitted are the implications and recommendations with respect to dietary changes. I would recommend that you read the full article at Mother Jones. The URL Web address is below.

Are Happy Gut Bacteria Key to Weight Loss?

by Moises Velasquez-Manoff

[Abridged version for readers of DataDrivenViewPoints.com]

MOTHER JONES – April 22, 2013

http://m.motherjones.com/environment/2013/04/gut-microbiome-bacteria-weight-loss

Highest-Calorie-Foods

In 2004 a curious diabetes specialist in Buffalo, New York, named Dr. Paresh Dandona, fed nine normal-weight volunteers an egg sandwich with cheese and ham, a sausage muffin sandwich, and two hash brown patties to see what effect this had on their bodies.

He found that levels of a C-reactive protein, an indicator of systemic inflammation, shot up “within literally minutes,” and remained elevated for hours. Inflammation is a natural and important part of our immune system response, but inflammation can also cause collateral damage, especially when the response is overwhelming—like in septic shock—or when it goes on too long.

Chronic, low-grade inflammation has long been recognized as a feature of metabolic syndrome, a cluster of dysfunctions that tends to precede full-blown diabetes and that also increases the risk of heart disease, stroke, certain cancers, and even dementia—the top killers of the developed world. The syndrome includes a combination of elevated blood sugar and high blood pressure, low “good” cholesterol, and an abdominal cavity filled with fat, often indicated by a “beer belly.” Could chronic systemic inflammation (CSI), in fact, be a major cause of metabolic syndrome disorder? A fast-food breakfast inflamed, he found, but a high-fiber breakfast with lots of fruit did not. A breakthrough came in 2007 when he discovered that while sugar water, a stand-in for soda, caused inflammation, orange juice—even though it contains plenty of sugar—didn’t.

This time, along with their two-sandwich, two-hash-brown, 910-calorie breakfast, one-third of his volunteers—10 in total—quaffed a glass of fresh OJ. The non-juice drinkers, half of whom drank sugar water, and the other half plain water, had the expected response—inflammation and elevated blood sugar. But the OJ drinkers had neither elevated blood sugar nor inflammation. The juice seemed to shield their metabolism. “It just switched off the whole damn thing,” Dandona says. Other scientists have since confirmed that OJ has a strong anti-inflammatory effect.

What caught Dandona’s attention was increased blood levels of a substance called endotoxin. This molecule comes from the outer walls of certain bacteria. If endotoxin levels rise, our immune system perceives a threat and responds with inflammation. Where had the endotoxin come from? We all carry a few pounds’ worth of microbes in our gut, a complex ecosystem collectively called the microbiota. The endotoxin, Dandona suspected, originated in this native colony of microbes. Somehow, a greasy meal full of refined carbohydrates ushered it from the gut, where it was always present but didn’t necessarily cause harm, into the bloodstream, where it did. But orange juice stopped that translocation cold.

If what some scientists now suspect about the interplay of food and intestinal microbes pans out, it could revolutionize the $66 billion weight loss industry—and help control the soaring $2.7 trillion we spend on health care yearly. “What matters is not how much you eat,” Dandona says, “but what you eat.”

Scientists now suspect that our microbial communities contribute to a number of diseases, from allergic disorders like asthma and hay fever, to inflammatory conditions like Crohn’s disease, to cancer, heart disease, and obesity. As newborns, we encounter our first microbes as we pass through the birth canal. Until that moment, we are 100 percent human. Thereafter, we are, numerically speaking, 10 percent human, and 90 percent microbe. Our microbiome contains at least 150 times more genes, collectively, than our human genome.

The importance of intestinal microbes to our health has grown increasingly evident. Animals raised without microbes essentially lack a functioning immune system. Entire repertoires of white blood cells remain dormant; their intestines don’t develop the proper creases and crypts; their hearts are shrunken; genes in the brain that should be in the “off” position remain stuck “on.” Without their microbes, animals aren’t really “normal.”

Scientists now suspect that our microbial communities contribute to a number of human diseases, from allergic disorders like asthma and hay fever, to inflammatory conditions like Crohn’s disease, to cancer, heart disease, and obesity. As newborns, we encounter our first microbes as we pass through the birth canal. Until that moment, we are 100 percent human. Thereafter, we are, numerically speaking, 10 percent human, and 90 percent microbe. Our microbiome contains at least 150 times more genes, collectively, than our human genome. Sometime in childhood, the bustling community of between 500 and 1,000 species stabilizes.

Our stool is roughly half living bacteria by weight. Every day, food goes in one end and microbes come out the other. The human gut is roughly 26 feet in length. Hammered flat, it would have a surface area of a tennis court. Seventy percent of our immune activity occurs there. The gut has its own nervous system; it contains as many neurons as the spinal cord. About 95 percent of the body’s serotonin, a neurotransmitter usually discussed in the context of depression, is produced in the gut. So the gut isn’t just where we absorb nutrients. It’s also an immune hub and a second brain. And it’s crawling with microbes. They don’t often cross the walls of the intestines into the blood stream, but they nevertheless change how the immune, endocrine, and nervous systems all work on the other side of the intestine wall.

Science doesn’t know exactly what goes wrong with our microbes in disease situations but a loss of intentional microbe diversity appears to correlate with the emergence of illness. Children in the developing world have many more types of microbes than kids in Europe or North America yet develop have fewer allergies and less asthma. In the developed world, children raised in microbially rich environments—with pets, on farms, or attending day care—have a lower risk of allergic disease.

Some studies find that babies born by C-section, deprived of their mother’s vaginal microbes at birth, have a higher risk of celiac disease, Type 1 diabetes, and obesity. Early-life use of antibiotics—which tear through our microbial ecosystems like a forest fire—has also been linked to allergic disease, inflammatory bowel disease, and obesity. Those who study human microbial communities fret that they are undergoing an extinction crisis.

If our microbiota plays a role in keeping us healthy, then how about attacking disease by treating the microbiota? After all, our community of microbes is quite plastic. New members can arrive and take up residence. Old members can get flushed out. Member ratios can shift. So the microbiota represents a huge potential leverage point in our quest to treat, and prevent, chronic disease. In particular, the “forgotten organ,” as some call the microbiota, may hold the key to addressing our single greatest health threat: obesity.

One-third of Americans are now considered overweight, and another third obese. Worldwide, one-fourth of humanity is too heavy, according to the World Health Organization. One-third of Americans are now considered overweight, and another third obese. Worldwide, one-fourth of humanity is too heavy, according to the World Health Organization.

The long-dominant explanation is simply that too little exercise and too many calories equals too much stored fat. The solution: more exercise and a lot more willpower. But there’s a problem with this theory: In the developed world, most of us consume more calories than we really need, but we don’t gain weight proportionally. If you run a daily surplus of just 500 calories you should gain a pound of fat per week, but we either gain weight much more slowly, or don’t gain weight at all.

Some corpulent people, meanwhile, have metabolisms that work fine. Their insulin and blood sugar levels are within normal range. Their livers are healthy, not marbled with fat. And some thin people have metabolic syndrome, often signaled by a beer gut. They suffer from fatty liver, insulin resistance, elevated blood sugar, high blood pressure, and low-grade, systemic inflammation. From a public health perspective, these symptoms are where the real problem lies—not necessarily how well we fit into our jeans.

In one study, mice raised without any intestinal microbes could gorge on food without developing metabolic syndrome or growing obese. But when colonized with their native microbes, these mice quickly became insulin resistant and grew fat, all while eating less food. Another researcher suspected that low-level inflammation might be the cause for this. To prove the principle, he gave mice a low dose of endotoxin, that molecule that resides in the outer walls of certain bacteria. The mice’s livers became insulin resistant; the mice became obese and developed diabetes. A high-fat diet alone produced the same result: Endotoxin leaked into circulation; inflammation took hold; the mice grew fat and diabetic. Then came the bombshell. The mere addition of soluble plant fibers called oligosaccharides, found in things like bananas, garlic, and asparagus, prevented the entire cascade—no endotoxin, no inflammation, and no diabetes. Oligosaccharides are one form of what’s known as a “prebiotic”.

Cani had essentially arrived at the same place as Dandona with his freshly squeezed orange juice. Junk food caused nasty microbes to bloom, and friendly bugs to decline. Permeability of the gut also increased, meaning that microbial byproducts—like that endotoxin—could more easily leak into circulation and spur inflammation. Simply adding prebiotics—in this case, Bifidobacteria—kept the gut tightly sealed, preventing the entire cascade. Our sweet and greasy diet changes gut permeability and alters the makeup of our microbial organ. Our “friendly” community of microbes becomes pathogenic, leaking noxious byproducts where they don’t belong.

Probiotics are bacteria thought to be beneficial to digestion, like the lactobacilli and other bacteria in some yogurts. In the future probiotics might be bacteria derived from those found in Amazonian Indians, rural Africans, even the Amish—people, in other words, who retain a microbial diversity that the rest of us may have lost.

Ultimately, the strongest evidence to support microbial involvement in obesity may come from a procedure that, on the face of it, has nothing to do with microbes: gastric bypass surgery. The surgery, which involves creating a detour around the stomach, is the most effective intervention for morbid obesity—far more effective than dieting.

Originally, scientists thought it worked by limiting food consumption. But it’s increasingly obvious that’s not how the procedure works. The surgery somehow changes expression of thousands of genes in organs throughout the body, resetting the entire metabolism. In March, Lee Kaplan, director of the Massachusetts General Hospital Weight Center in Boston, published a study in Science Translational Medicine showing a substantial microbial contribution to that resetting.

He began with three sets obese mice, all on a high-fat diet. The first set received a sham operation—an incision in the intestine that didn’t really change much, but was meant to control for the possibility that trauma alone could cause weight loss. These mice then resumed their high fat diet. A second set also received a sham operation, but was put on a calorically restricted diet. The third group received gastric bypass surgery, but was then allowed to eat as it pleased. As expected, both the bypass mice and dieted mice lost weight. But only the bypass mice showed normalization of insulin and glucose levels. Without that normalization, says Kaplan, mice and people alike inevitably regain lost weight.

To test the microbial contribution to these outcomes, Kaplan transplanted the microbiota from each set to germ-free mice. Only rodents colonized with microbes from the bypass mice lost weight, while actually eating more than mice colonized with microbes from the other groups. In humans, some studies show a rebound of anti-inflammatory bacteria after gastric-bypass surgery. Dandona has also noted a decline in circulating endotoxin after the procedure. If we understand the mechanism by which the microbiota shifts, he says, perhaps we can induce the changes without surgery.

NOT EVERYONE ACCEPTS that inflammation drives metabolic syndrome and obesity. And even among the idea’s proponents, no one claims that all inflammation emanates from the microbiota. Moreover, if you accept that inflammation contributes to obesity, then you’re obligated to consider all the many ways to become inflamed. The odd thing is, many of them are already implicated in obesity.

Particulate pollution from tailpipes and factories, linked to asthma, heart disease, and obesity, is known to be a cause of inflammation. So is chronic stress. And risk factors may interact with each other: In macaque troops, the high-ranking females, which experience less stress, can eat more junk food without developing metabolic syndrome than the more stressed, lower-ranking females. Epidemiologists have made similar observations in humans. Poorer people suffer the consequences of lousy dietary habits more than do those who are wealthier. The scientists who study this phenomenon call it “status syndrome.”

Exercise, meanwhile, is anti-inflammatory, which may explain why a brisk walk can immediately improve insulin sensitivity. Exercise may also fortify healthy brown fat, which burns off calories rather than storing them, like white fat does. This relationship may explain how physical activity really helps us lose weight. Yes, exercise burns calories, but the amount is often trivial. Just compensating for that bagel you ate for breakfast—roughly 290 calories—requires a 20-minute jog.

Then there’s the brain. Michael Schwartz, director of the Diabetes and Obesity Center of Excellence at the University of Washington in Seattle, has found that the appetite regulation center of the brain—the hypothalamus—is ofteninflamed and damaged in obese people. He can reproduce this damage by feeding mice a high-fat diet; chronic consumption of junk food, it seems, injures this region of the brain. Crucially, the brain inflammation precedes weight gain, suggesting that the injury might cause, or at least contribute to, obesity. In other words, by melting down our appetite control centers, junk food may accelerate its own consumption, sending us into a kind of vicious cycle where we consume more of the poison wreaking havoc on our physiology.

Of course there’s a genetic contribution to obesity. But even here, inflammation rears its head. Some studies suggest that gene variants that increase aspects of immune firepower are over-represented among obese individuals. In past environments, these genes probably helped us fight off infections. In the context of today’s diet, however, they may increase the risk of metabolic syndrome.

Biologically simple, processed foods may cultivate a toxic microbial community, not unlike the algal blooms that result in oceanic “dead zones.” In fact, scientists really do observe a dead zone of sorts when they peer into the obese microbiota. Microbes naturally form communities. In obese people, not only are anti-inflammatory microbes relatively scarce, diversity in general is depleted, and community structure degraded. Microbes that, in ecological parlance, we might call weedy species—the rats and cockroaches of your inner world—scurry around unimpeded. What’s the lesson? Junk food may produce a kind of microbial anarchy. Opportunists flourish as the greater structure collapses. Cooperative members get pushed aside. And you, who both contain and depend on the entire ecosystem, pay the price.

[This abridged version is provided for public use. See https://datadrivenviewpoints.com/fair-use-notice/]

Half of All Full-time Employees Earn Less Than $19/hr.

DATA DRIVEN VIEW POINT:  There are 103.6 million full-time workers in America, half of whom make $758 per week or less before income taxes and other payroll deductions.  That means a full time worker supporting a family of 4 and making the median U.S. wage needs, and is income eligible for, supplemental food assistance (SNAP).  These employees work a minimum of 35 hours per week, but may be working more than 40 hours per week as this income includes tip, commissions and overtime. It doesn’t include employer benefits.  All self-employed persons are excluded.
If the average hours worked per week is between 40 and 50 hours, the median hourly wage would be between $15 and $19 dollars per hour (with any overtime pay included). Again, that means that almost half of all full-time employees make less than $15 to $19 dollars per hour.  By inference, this means a great many full-time employees are making close to minimum wage. Also of note is the significant wage disparity between men and woman, especially among White and Asian women.
American workers are simply not being paid enough.  Any business hiring a full-time employee and paying less than a living wage should be taxed the difference between the employees wages and the taxpayer supported supplemental services that person is entitled to receive.

Bureau of Labor Statistics
For release 10:00 a.m. (EDT) Thursday, October 18, 2012   USDL-12-2072
Technical information: (202) 691-6378  •  cpsinfo@bls.gov  •  www.bls.gov/cps
Media contact: (202) 691-5902  •  PressOffice@bls.gov

USUAL WEEKLY EARNINGS OF WAGE AND SALARY WORKERS THIRD QUARTER 2012

Median weekly earnings of the nation’s 103.6 million full-time wage and salary workers were $758 in the third quarter of 2012 (not seasonally adjusted), the U.S. Bureau of Labor Statistics reported today.

This was 0.7 percent higher than a year earlier, compared with a gain of 1.7 percent in the Consumer Price Index for All Urban Consumers (CPI-U) over the same period.

Data on usual weekly earnings are collected as part of the Current Population Survey, a nationwide sample survey of households in which respondents are asked, among other things, how much each wage and salary worker usually earns. (See the Technical Note.) Data shown in this release are not seasonally adjusted unless otherwise specified. Highlights from the third-quarter data are:

  • Seasonally adjusted median weekly earnings were $765 in the third quarter of 2012, little changed from the previous quarter ($773). (See table 1.)
  • On a not seasonally adjusted basis, median weekly earnings were $758 in the third quarter of 2012. Women who usually worked full time had median weekly earnings of $685, or 82.7 percent of the $828 median for men. (See table 2.)
  • The female-to-male earnings ratio varied by race and ethnicity. White women earned 83.4 percent as much as their male counterparts, compared with black (93.2 percent), Hispanic (87.5 percent), and Asian women (73.1 percent). (See table 2.)
  • Among the major race and ethnicity groups, median weekly earnings for black men working at full-time jobs were $633 per week, or 74.1 percent of the median for white men ($854). The difference was less among women, as black women’s median earnings ($590) were 82.9 percent of those for white women ($712). Overall, median earnings of Hispanics who worked full time ($556) were lower than those of blacks ($606), whites ($780), and Asians ($915). (See table 2.)
  • Usual weekly earnings of full-time workers varied by age. Among men, those age 45 to 54 and 55 to 64 had the highest median weekly earnings, $976 and $980, respectively. Usual weekly earnings were highest for women age 35 to 64; weekly earnings were $740 for women age 35 to 44, $754 for women age 45 to 54, and $766 for women age 55 to 64. Workers age 16 to 24 had the lowest median weekly earnings, at $437. (See table 3.)
  • Among the major occupational groups, persons employed full time in management, professional, and related occupations had the highest median weekly earnings—$1,300 for men and $948 for women. Men and women employed in service jobs earned the least, $530 and $440, respectively. (See table 4.)
  • By educational attainment, full-time workers age 25 and over without a high school diploma had median weekly earnings of $464, compared with $648 for high school graduates (no college) and $1,170 for those holding at least a bachelor’s degree. Among college graduates with advanced degrees (professional or master’s degree and above), the highest earning 10 percent of male workers made $3,448 or more per week, compared with $2,311 or more for their female counterparts. (See table 5.)

Revision of Seasonally Adjusted Usual Weekly Earnings Data The Usual Weekly Earnings news release for the fourth quarter of 2012 will incorporate annual revisions to seasonally adjusted data for the number of full-time wage and salary workers and median weekly earnings in current dollars. (See table 1.) Estimates for constant (1982-84) dollar median weekly earnings also will be affected by revisions to the current dollar series.  Seasonally adjusted estimates back to the first quarter of 2008 will be subject to revision.


Go to Tables: http://www.bls.gov/news.release/pdf/wkyeng.pdf

Some Tea Bags Contain Plastic? Who knew!

DATA DRIVEN VIEWPOINT:  Time to switch to loose tea?  I accidentally came across this snippet of an article in Wikipedia explaining how some tea bags use plastic in the their manufacture.  I have been trying to get away from plastics, especially in hot food and drink applications (anyone know where I can find an all steel automatic coffee maker?)  Below is the article and some information about PVC and PP, the two plastics mentioned in this Wikipedia entry.

From Wikipedia:

Paper

Main article: Filter paper

Three different teas in tea bags

Tea bag paper is related to paper found in milk and coffee filters and is a blend of wood and vegetable fibers. The vegetable fiber isbleached pulp abaca hemp, a small plantation tree grown for its fiber, mostly in the Philippines and Colombia. Heat-sealed tea bag paper usually has a heat-sealable thermoplastic such as PVC or polypropylene as a component fiber on the inner tea bag surface.

[edit]http://en.wikipedia.org/wiki/Tea_bag#Production

How can PVC affect my health?

Exposure to PVC often includes exposure to phthalates, which are used to soften PVC and may have adverse health effects.
Because of PVC’s heavy chlorine content, dioxins are released during the manufacturing, burning, or landfilling of PVC. Exposure to dioxins can cause reproductive, developmental, and other health problems, and at least one dioxin is classified as a carcinogen.
Dioxins, phthalates, and BPA are suspected to be endocrine disruptors, which are chemicals that may interfere with the production or activity of hormones in the human endocrine system.

http://toxtown.nlm.nih.gov/text_version/chemicals.php?id=84

Health Risks of PVC Plastic
PVC is dangerous to human health and the environment throughout it’s entire life cycle, during production, in our homes, and in the trash. At each stage it releases poisonous chemicals such as mercury, dioxins, and phthalates, which can cause cancer and harm the immune and reproductive systems. Workers at PVC plants may face life-long health risks from exposure to PVC and other hazardous chemicals used to make PVC. Babies and young children are especially vulnerable to these toxins and exposure greatly increases the following health risks:
  • Hormonal imbalances
  • Reproductive and developmental problems
  • Allergies in children
  • Brain cancer
  • Leukemia or cancer of the blood.
  • Scleroderma or hardening of connective tissue throughout the body
  • Cholangiocarcinoma – a malignant tumor near the gall bladder and liver
  • Angiosarcoma – a malignant tumor arising from a blood vessel
  • Lymphomas or cancer of the lymph system
  • Liver cirrohosis
Disposing of PVC plastics is an environmental nightmare.

What is polypropylene (PP)?

Polypropylene (PP) is known for its high melting point, which makes it ideal for holding hot liquids that cool in the bottles (for example, ketchup and syrup). It can be manufactured to be flexible or rigid. PP is used to make containers for yogurt, margarine, takeout meals, and deli foods. It is also use for medicine bottles, bottle caps, and some household items. It is identified as number 5.

2.6 Observations in man

Skerfving et al. (19) briefly stated in their case report on polyethylene fume asthma that they have also seen a case of bronchospasm caused by polypropylene fumes; but the patient had a pre–existing bronchospasmic disease.  An asthma case in the production of polypropylene bags has been reported (16).

The exposure levels of the degradation products were not measured. The patient reacted in the challenge test where polypropylene was heated at 250ºC. No exposure data was given. When the patient was exposed to formaldehyde, no bronchospasmic reaction was elicited.  Epidemiological studies of polypropylene production workers and carpet manufacturing employees who used polypropylene showed a significant excess of colorectal cancer (1, 2, 20-22). These studies were based on clusters of colorectal cancer. In one study, 5 of the 7 cases were diagnosed within a 5–month period and in the other study 5 cases were diagnosed within an 18–month period. The exposure data were very poor in these studies, and it is not even possible to state if there had been any significant exposure to the thermal degradation products of polypropylene. Recent updates of these two original study populations have found no continuation of the excess of colorectal cancer, thereby indicating the chance nature of the clusters (9, 10, 14, 15). Other investigations of polypropylene production workers in Canada (18), Germany (12), Australia (3, 6) and the United Kingdom (4) found no link with colorectal cancer. Lagast et al. (13) pooled the results of the above studies and calculated an aggregate number of 20 observed cases and of 14.65 expected cases. The difference is not statistically significant.  As a whole, the combined weight of epidemiological evidence does not support an association between the work at polypropylene production and colorectal cancer.